
8/13/23, 7:45 PM Practices (20-RENPRA) - SDEVEN Software Development & Engineering Methodology

Page 1 of 3

Version: 7.0.14
Release date: 230812

Practices (SDEVEN.20-RENPRA)

Table of Content

Practices (SDEVEN.20-RENPRA)

General common and frequent aspects

Branches and repository

Releases check list

Technical issues regarding syncing and distributed execution

Tool stacks components versions

Functions signature parameters

This procedure recommend "day-by-day" practices in software development work targeting the following objectives:

to assure a good level of communication and exchange information

to create premises for a good synchronization of activities and work

to allow for clear presentations of work results and obtain best bene�ts

Recommendations are more easily applicable when using standard git systems (practice strongly recommended by
SDEVEN methodology).

General common and frequent aspects

Here is a list with the most common and frequent situations:

never change anything for a closed version or issue. Normal way is to create a new issue instead of changing
the existing one.

organize development issues in sprints as small chunks of changes that have clear objective, specs (following
Agile principle) and a short enough deadline to remain "useful & valuable" at �nish

SDEVEN Software Development & Engineering Methodology

Git usage

8/13/23, 7:45 PM Practices (20-RENPRA) - SDEVEN Software Development & Engineering Methodology

Page 2 of 3

when work for an issue always create a dedicated branch, and make STRICTLY WHAT IS INTENDED, EXPECTED
and REQUIRED TO DO (otherwise could be di�cult to reverse work, for example in case of something goes
wrong with unlikely impact to the quality of result and the deadline term). Respect the principle that states
"when you do something, do ONLY THAT THING and do it WELL".

Branches and repository

always make a branch for each change / sprint, even is a short one (will allow you to quickly rollback work) - this
branch should be locally on your development machine but is not mandatory, it could be remote and devops
engineer should be noti�ed

try to avoid mixing with other branches even if they're still yours (as work in progress)

Releases check list

Here is a check list regarding most important issues that need attention before closing a release:

check for still open, in progress sections; look for speci�c words like wip , ... (ellipses), todo , fixme , bug ,
need review , etc. Ignore case when search for these words !

check release notes: if exists as separated �le or there are marked in a clear way, not mixed with things intended
or in work for other versions

check for version code (at least major, minor, patch) to be in according with roadmap

check technical documentation: specs for usage, notes for developers

check for end user documentation: updates, references that released features are available from version x, "how
to use features", etc

check the language used in end user intended documents to be as most as possible IMPARTIAL and avoid
misinterpretations

check for other elements with impact on branding, such as logos, colors, fonts, etc

Technical issues regarding syncing and distributed execution

ref sync subject objects it is recommended to be accompany them with useful metadata at least with info ref to
last sync date time stamp

in multi systems sync (more than 2 involved in sync process), every system should have its own list with
targeted systems to be synced; this list itself is subject to sync

generally ref syncing it is recommended to use standard components and technologies, like rsync or derivate
but largely enough used and maintained by producer; clearly should be avoided solutions that are available only
on few systems (and in this case this should be explicitly documented)

ref distributed execution of processes it is recommended to use already known components that have enough
support as community and are dependent only of other known components, for example for queues and pub /

8/13/23, 7:45 PM Practices (20-RENPRA) - SDEVEN Software Development & Engineering Methodology

Page 3 of 3

sub systems, Rabbit MQ, Redis, AMPQ, can be used; proprietary closed systems should be avoided (can be used
only in custom / dedicated / turn key systems if the bene�ciary want strictly a component)

in �le names intended for code modules / parts / chunks AVOID the character dash (-). Replace it with
underscore (_). In many languages the inclusion of the other �les in code is made using some pre-processor
directives (as include , import , require , and so on) and these directives does not always accept strings but
directly �lenames and often the dash character is treated as minus arithmetical operator which can lead to
many "hard to detect" problems.

More information, techniques and practices can be �nd in template of Software Design document.

Tool stacks components versions

new (not enough tested in market) version of a toolstack component must be avoided, especially when is a core
one for system where work is done

if a feature intended to be used is not backward compatible, before using or updating it must check for:

the impact to already developed or in development code by any member

adoption of this version in standard operating systems

Functions signature parameters

This chapter makes subject of optional recommended practices

always make a local (in function code) copy of received parameters. This is to minimizing risk of generating
unwanted side effects, except you really want to change their values and this change to be "seen" by caller

PAY ATTENTION that making a copy of parameters is not enough to avoid side effects; if they are mutable (ie
pointer, address) its update will alter the original value with unwanted side effect (unless is made intentionally)

Optional chapter

Last update: August 13, 2023

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/Appendix_B_DSGN_Content_Index.html

